Transcriptional regulation of the human bone sialoprotein gene by fibroblast growth factor 2.

نویسندگان

  • Liming Zhou
  • Yorimasa Ogata
چکیده

Fibroblast growth factor 2 (FGF2), a member of the FGF family, positively regulates bone formation and osteoblast differentiation. Bone sialoprotein (BSP) is highly expressed during early bone formation and may play a role in primary mineralization of bone. In the present study, FGF2 (10 ng/mL) was found to increase the levels of Runx2 and BSP mRNA at 3 and 12 h in human osteoblast-like Saos2 cells. Transient transfection assays were performed using chimeric constructs of the human BSP gene promoter ligated with a luciferase reporter gene. FGF2 (10 ng/mL, 12 h) induced the luciferase activities of the -84LUC and -927LUC constructs in Saos2 cells. The results of gel shift assays showed that FGF2 (10 ng/mL) increased the binding of nuclear protein to the FGF2 response element (FRE) and the activator protein 1 (AP1) binding site. Antibodies against Dlx5, Msx2, Runx2 and Smad1 blocked FRE-protein complex formation, and antibodies against CREB1, c-Jun and Fra2 interrupted AP1-protein complex formation. These results indicate that FGF2 increases BSP transcription by targeting the FRE and AP1 elements in the proximal promoter of the human BSP gene. Moreover, the transcription factors Dlx5, Msx2, Runx2, Smad1, CREB1, c-Jun and Fra2 could be key regulators of the effects of FGF2 on human BSP transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional regulation of bone sialoprotein gene by CO(2) laser irradiation.

Bone sialoprotein (BSP), an early marker of osteoblast differentiation, has been implicated in the nucleation of hydroxyapatite during de novo bone formation. Low-power laser irradiation has a stimulating effect on cells and tissues. Although the carbon dioxide (CO(2)) laser is a hard surgical laser, we have attempted to use it at low energy density to achieve biological alterations. To investi...

متن کامل

A COMPARATIVE STUDY BETWEEN EXPRESSION OF A SYNTHETIC GENE OF HUMAN BASIC FIBROBLAST GROWTH FACTOR (hbFGF) AND ITS RELATED cDNA IN ESCHERICHIA COLI

The gene encoding the human basic fibroblast growth factor (hbFGF) has been already chemically-synthesized and cloned in pET-3a expression vector (Pasteur Institute of Iran). In the present study, we compared the level of expression of this synthetic hbFGF and its related cDNA in Escherichia coli. The pBR322-cDNA of hbFGF supplied by Dr. Seno (from Molecular Biology Dept, Okaido prefectural uni...

متن کامل

Revised Manuscript MS C2900 Regulation of mRNA Expression of Matrix Extracellular Phosphoglycoprotein (MEPE)/ Osteoblast/Osteocyte Factor 45 (OF45) by Fibroblast Growth Factor 2 in Cultures of Rat Bone Marrow-derived Osteoblastic Cells

Matrix extracellular phosphoglycoprotein (MEPE)/ osteoblast/osteocyte factor 45 (OF45) is a recently isolated RGD-containing matrix protein that acts as the tumor-derived phosphaturic factor in oncogenic hypophosphatemic osteomalacia. It is also highly expressed by osteoblasts and osteocytes. We examined the regulation of MEPE/OF45 mRNA expression in osteoblastic cells derived from high-density...

متن کامل

Transcriptional regulation of osteopontin production in rat osteoblast- like cells by parathyroid hormone

Osteopontin (OP) or bone sialoprotein is a recently characterized extracellular matrix protein which is abundant in bone and is produced by osteoblasts. Parathyroid hormone (PTH) is a potent calcitropic hormone which regulates osteoblastic function including the synthesis of extracellular matrix proteins. This study examines the effect of human PTH (hPTH-[1-34]) on the expression of this novel ...

متن کامل

Regulation of Bone Metabolism

Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of oral science

دوره 55 1  شماره 

صفحات  -

تاریخ انتشار 2013